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Summary 
Using a series of phenotypic markers that include immunoglobulin (Ig)D, IgM, IgG, CD23, 
CD44, Bcl-2, CD38, CD10, CD77, and Ki67, human tonsillar B cells were separated into five 
fractions representing different stages of B cell differentiation that included slgD + (Bin1 and 
Bm2), germinal center (Bin3 and Bin4), and memory (BinS) B cells. To establish whether the 
initiation of somatic mutation correlated with this phenotypic characterization, we performed 
polymerase chain reaction and subsequent sequence analysis of the Ig heavy chain variable region 
genes from each of the B cell subsets. We studied the genes from the smallest V. families (VH4, 
V.5, and VH6) in order to facilitate the mutational analysis. In agreement with previous reports, 
we found that the somatic mutation machinery is activated only after B cells reach the germinal 
center and become centroblasts (Bm3). Whereas 47 independently rearranged IgM transcripts 
from the Bml and Bm2 subsets were nearly germline encoded, 57 Bm3-, and Bm4-, and BmS- 
derived IgM transcripts had accumulated an average of 5.7 point mutations within the V. gene 
segment. 3' transcripts corresponding to the same V. gene families were isolated from subsets 
Bm3, Bin4, and Bm5, and had accumulated an average of 9.5 somatic mutations. We conclude 
that the molecular events underlying the process of somatic mutation takes place during the 
transition from IgD +, CD23 + B cells (Bm2) to the IgD-, CD23-, germinal center centroblast 
(Bm3). Furthermore, the analysis of Ig variable region transcripts from the different subpopulations 
confirms that the pathway of B cell differentiation from virgin B cell throughout the germinal 
center up to the memory compartment can be traced with phenotypic markers. The availability 
of these subpopulations should permit the identification of the functional molecules relevant 
to each stage of 13 cell differentiation. 

T he variable regions of the two critical antigen receptors 
of the immune system, the T cell receptor and the im- 

munoglobulin molecule, are encoded by five different genetic 
elements that, in the germline, are separated by thousands 
of base pairs (1, 2). A recombination machinery shared by 
T and B cells brings these elements together into functional 
TCR V~/V~ and Ig V./V~ chains (3). Availability of a 
broad array of germline genes, generation of random amino 
acids during the process of rearrangement, and combinato- 
rial association of Vo/V~ and VH/V~ chains are essential steps 
in the generation of diversity within the T and B cell reper- 
toires. B cells display the unique property of accumulating 
somatic mutations in their Ig variable region genes, further 
contributing to increase the almost limitless number of anti- 
genic specificities (1). 

Although a large body of information has accumulated in 
recent years concerning the repertoire of human Ig variable 
region genes, both at the level of genomic organization and 

expression, our current knowledge about the mechanism of 
somatic mutation remains elementary. Mutations are intro- 
duced only into rearranged Ig genes of transcriptionally ac- 
tive heavy and light chains, at a rate of "~10-3/bp/genera- 
tion (4). Although both productively and nonproductively 
rearranged V genes are targeted, mutations predominantly 
occur within the region which surrounds the rearranged vari- 
able region gene, spanning "~2 kb of DNA (5). Even though 
somatic mutation is thought to be near random, strand potarity 
(6-9) and mutational hot spots have been reported (reviewed 
in 10). There is considerable evidence that the peripheral lym- 
phoid organs provide the microenvironment for the activa- 
tion of virgin and memory B cells and the accumulation of 
somatic mutation during the humoral immune response. Early 
B cell activation during antigen-specific antibody responses 
occurs in the T cell and interdigitating cell areas of the lymph 
nodes, tonsils, Peyer's patches, and the periarteriolar lympho- 
cytic sheaths (PALS) of the spleen. This early B cell activa- 
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tion gives rise to short lived plasma cells, IgM-positive splenic 
marginal zone B cells, and primary B cell blasts that colonize 
the primary follicles (11-14). The subsequent germinal center 
(GC) 1 reaction is initiated by the rapid proliferation of three 
to five primary blasts in association with follicular dendritic 
cells (11, 12, 15). The primary B blasts follow a differentia- 
tion pathway from centroblasts to centrocytes, and then to 
either plasma cells or memory B cells (16-19). During these 
processes, somatic hypermutation (20-23), positive selection 
(24-26) and differentiation of high affinity GC B cells occurs 
(27-33). To date, progress in understanding the molecular 
mechanisms underlying somatic mutation has been hampered 
by the lack of an experimental in vitro system. 

Kinetic analyses of V region mutation and selection of 
microdissected murine GC B cells have been recently reported 
(34). These studies indicate that mutant B cells are not de- 
tected in early GC, and that the estimated three to six B cells 
that give rise to each GC undergo substantial proliferation 
before the initiation of Ig hypermutation. Using a similar 
approach, Kuppers et al. (35) have recently reported that 
the human GC is initially populated by a polyclonal set of 
antigen-activated B cells that proliferate in the dark zone 
and largely express unmutated V region genes. The same 
group has been able to establish that human peripheral blood 
B cells can be phenotypically separated into three subsets 
(IgM + IgD +, IgM + IgD- ,  and IgM- IgD-),  only one of 
which (IgM+IgD +) expresses unmutated genes (36). 

In this report, we describe the phenotypic characteriza- 
tion of five B cell subsets (Bin1 to BmS) representing different 
stages of B cell maturation, from the naive IgD + state (Bin1 
and Bin2), through the GC CD38 + stage (Bin3 and Bin4) 
to the IgD-CD38-  memory B cell (Bin5). The analysis of 
the Ig heavy chain variable region gene transcripts from these 
B cell populations indicates that the initiation of somatic mu- 
tation correlates with the phenotypic characteristics of the 
GC centroblast (slgD-,  CD38 +, CD77§ 

Materials and Methods 
Isolation of Tonsil B Cells 

Tonsil B cells were taken from patients during routine tonsillec- 
tomy, minced, and the resulting cell suspensions were subjected 
to two rounds of T cell depletion using 2-aminoethyl-isothiouridium 
bromide-modified sheep red blood cells. The resulting calls were 
>97% CD19 +, and <1% CD14 + and CD3 § and were further 
separated into high density and low density B cells by centrifuga- 
tion through 15, 60, and 65% Percoll gradients (Pharmacia LKB, 
Uppsala, Sweden). The resulting total tonsil B cells and the high 
and low density B ceUs were used for phenotypic analysis, im- 
munomagnetic bead sorting, and FACS | sorting into five B cell 
subsets. 

Labeling of Cell Surface Antigens 
Direct Immunofluorescence Staining. Labeling was performed using 

1 Abbreviations used in this paper: GC, germinal center; R./S, replacement 
vs. silent. 

the following mAbs directly conjugated with PE or FITC: anti- 
CD23-PE (Serotec, Ltd., Oxford, UK), anti-CD23-FITC (Im- 
munoTech, Marseille, France), anti-CD38 ascitic fluid (Ortho Di- 
agnostic Systems, Koissy, France), anti-CD38-PE (Becton Dick- 
inson & Co., Mountain View, CA), anti-CD77 supematant 
(Immunotech), anti-human IgD Biot. (Amersham Corp., Arlington 
Heights, IL), anti-CD39-Biot. (The Binding Site, Ltd., Bir- 
mingham, UK). 

Indirect Immunofluorescence Staining. Labeling was performed 
with a panel of uncoupled or biotinylated routine mAbs that were 
detected by FITC-conjugated sheep anti-mouse Ig F(ab')2 or PE- 
conjugated streptavidin. 

Double Immunofluorescence Staining. Cells were sequentially in- 
cubated with two mAbs using two protocols: (a) mAbs conjugated 
to FITC and PE; and (b) one antibody conjugated to FITC and 
another biotinylated, which was detected by PE-hbeled streptavidin. 

Cell Sorting 
Cells were sorted with a FACStar | (Becton Dickinson & Co.) 

equipped with a 2-W argon laser. 

Sequencing the Ig V~ 7~anscripts from the Five B Cell Subsets 
Total RNA was extracted from 1-5 x l0 s cells using 

guanidinium thiocyanate-phenol-chloroform in a single step (37). 
The total KNA yield was reverse transcribed using oligo d(T) as 
primer and avian myeloblastosis virus reverse transcriptase in 100 
#1 final volume. First strand cDNA (1-5 #1) was directly used for 
second strand synthesis and amplification via the PCR (38) in a 
final volume of 100 #1 containing 200 #M of each dNTP, 50 mM 
KC1, 10 mM Tris-HC1, pH 8.3, at 37~ 1.5 mM MgClz, 2.5 U 
Taq polymerase, and 50 pmol of primers that consisted of oligonu- 
cleotides corresponding to the C# and C3' constant regions (#1: 
5'CGG GTG CTG CTG ATG TCA GACY; #2: 5'TGG ~ GGA 
TGC ACT CCCY; 3"1: 5' CAC CGT CAC CGG TTC GGY; 
3'2: 5'GTA GTC CTT GAC CAG GCA GC3') the VH 
family-specific leaders (V.4, V.5, and V.6) (39), and the FW1 se- 
quences of the V.4-21 (5'CTA CAG CAG TGG GGC GCAY) 
(40). PCR was carried out for 40 cycles under standard conditions 
(denaturation 1 min at 94~ annealing 2 rain at 54-58~ exten- 
sion 1 rain at 72~ The PCK products were purified using 
microconcentrators (Microcon 100; Amicon, Beverly, MA), phos- 
phorylated, and blunt-end ligated into an EcoRV-digested, dephos- 
phorylated plasmid (pBluescript; Stratagene, La Jolla, CA). The 
ligation mixtures were used to transform BSJ-72 competent cells, 
and two replicas of the colonies were screened with internal end- 
labeled oligonucleotides. Positive colonies were sequenced in both 
directions by the dideoxy chain-termination method (41) using either 
3"-3sS-ATP and Sequenase (42), or fluorescent labeled ddNTP and 
Taq-Polymerase (auto-mated sequencer protocol; ABI Advanced 
Biotechnologies Inc., Columbia, MD). 

Analysis Of DNA Sequences 
A total of 146 IgM and IgG transcripts were analyzed using 

DNAstar (DNAstar Inc., Madison, WI). Clonal relatedness was 
established by analyzing the CDR3 regions. Sequences displaying 
100% identity throughout the VDJ region were considered as a 
single transcript in the mutational analysis. Sequences with similar 
CDR3 length and sequence but with scattered nucleotide differ- 
ences were considered the result of in vivo clonal expansion. Par- 
allel mutations in these types of related clones were counted only 
once in the analysis. 

330 Nucleotide Sequence Analysis of Human Tonsil B Cell Subsets 



Results 
Isolation of the B Cell SublJopulations. In recent years, the 

use of mAbs has allowed the identification of a large number 
of surface B cell markers. Immunohistochemical analysis using 
these mAbs has facilitated the tentative assignment of B cell 
subsets (43-45). In our study, tonsil B cells were double stained 
with anti-CD38 and anti-IgD, since these two markers have 
been shown to differentiate follicular mantle (IgD +) from 
GC (CD38 +) B cells. Accordingly, three major B cell sub- 
populations could be identified (Fig. 1). 

CD38- ,  IgD + B cells were purified from high density B 
cells by depletion of CD38 +, IgG +, and IgA + B cells. The 
resulting cells are small resting B cells that express high levels 
of IgD, IgM, CD44, and cytoplasmic Bcl-2 protein. They 
are negative for CD38, CD10, CD77, and IgG, and display 
low levels of CD20 (data not shown). Since *30% of these 
cells express CD23, a marker associated with B cell activa- 
tion (46), we separated via FACS | CD23- from CD23 + 
cells and defined them as Bin1 and Bm2 cells, respectively. 

CD38 +, IgD- B cells were purified from low density B 
ceils by depletion of IgD- and CD39 + B cells. They express 
high levels of CD38, CD10, CD20, IgG, and the nuclear 
antigen Ki67 but are negative for CD39, IgD, CD23, and 
the cytoplasmic protein Bcl-2 (data not shown). About 40% 
of these cells express CD77, and only 10% express CD44. 
As Fig. 1 shows, CD77 was used to separate via FACS | two 
cell subpopulations, Bin3 (CD77 +) and Bin4 (CD77-), 
since CD77 has been shown to differentiate dark zone cen- 

troblasts from light zone centrocytes (43-45). These cells are 
large to medium size with characteristic nuclear clefts. 

CD38- IgD- B cells were isolated from total B cells by 
depletion of CD38 + and IgD + B cells. These cells express 
high levels of IgG, CD39, CD44, and cytoplasmic Bcl-2 pro- 
tein, are negative for IgD, CD23, CD38, CD10, CD77, and 
nuclear antigen Ki67, and display low levels of CD20 (data 
not shown). They are small- to medium-sized lymphocytes 
with cytoplasmic processes. 

PCR Analysis of lgM and IgG Transcripts from the Bml-Bm5 
Subsets. Oligonucleotide primers specific for the human 
V.4, V.5, and VH6 gene families were used in combination 
with IgM and IgG constant region primers to amplify via 
PCR the heavy chain variable region mRNAs from each of 
the B cell subpopulations isolated from two different tonsils. 
After a single round of PCR (40 cycles), we successfully 
amplified V.4 and V.5 IgM transcripts from each of the Bm 
subsets. However, a second round of seminested PCR with 
internal constant region primers was required to obtain Bml, 
Bm2, and Bm5 IgM V.6 products. A second round of PCR 
was also undertaken to selectively amplify the VH4-21 gene 
segment (40) from the initial V~4 PCR products. IgG tran- 
scripts from the same V.4, V.5, and V.6 families could only 
the amplified from subpopulations Bin3, Bm4, and Bin5. All 
the PCR amplifications were performed in duplicate with 
identical results. Although our PCR conditions were not de- 
signed to be quantitative, the comparable amplification of 

01 :'--~';-~"K-=.'.';~.:;;:;-. ,. 

f I~01 103 Bm5 CD38- IgD-  
< CD 3B ) 

\ 

i 
1 0 3 ~  

l o  1 ! 

Bm2 
--~ i; 

Bml 

�9 . t * ~ *  

C D 2 5 +  

C D 2 ~ -  

�9 , ~ :  . . . . .  

~o'~~~~ ......... i. �9 

101 103 

4~CD 7 7  ----> 

Bm 3 m. 

C D 7 7 +  

~L- 
.:-7: 

CD77- 

Figure 1. Immunofluores- 
cence FACS | analysis of tonsil B 
cells to identify IgD+CD38 - 
FM B cells, IgD-CD38 + GC B 
cells, and IgD-CD38- memory 
B cells. IgD + B cells were fur- 
ther sorted into CD23- (Bml) 
and CD23 + Bm2 cells. CD38 + 
B cells were sorted into CD77 + 
(Bm3) and CD77- (Bin4) cells. 
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IgM V.4 and V,5 messages from the five subpopulations 
provides an internal control that rules out major biases in- 
troduced by differences in the starting amounts of template. CLONE 

Sequence Analysis Reveals That Somatic Mutation Involves the 
GC (Bm3 and Bin4) and Memory B Cell (Bm5) Subpopulations. 
We analyzed 146 V. sequences derived from the different B 1-6MG 
cell subpopulations and compared the regions encoded by the 1-6MH 

1 - 6 M V  
V. gene segment with their corresponding V. germline I-6MA 
counterparts. D segments were not included in the muta- 1-6MGG 
tional analysis due to the usual difficulty in accurately estab- I - 6 M C  

lishing their germline origin. As Table i shows, 28/47 Bml 1-6MJ 
and Bm2 IgM transcripts were 100% identical to their germ- 1-6ME 

I - 6 M L  
line counterparts, 12/47 displayed a single nucleotide differ- I-6MM 

ence, 6/47 had two differences, and only one sequence con- 
tained four nucleotide substitutions in the region encoded 1-4Mll 
by the V .  gene segment. Strikingly, analysis of IgM Bm3 I - 4 M 1  

transcripts disclosed that only 4/25 were 100% identical to I - 4 M 2  
I - 4 M 6  

the germline, whereas 19/25 had accumulated more than three 1-4M12 
nucleotide substitutions. Finally, none of the 17 Bm4 IgM 1-4M3 
and only 1/15 Bm5 transcripts displayed complete identity 1-4M7 
with the germline. Accordingly, all the Bm3, Bm4, and Bm5 1-4M5 

I - 4 M 9  
IgG transcripts (15, 6, and 8, respectively) were mutated (Table 1-4M10 
1 and Fig. 2, A and B). 1 - 4 M 8  

Fig. 3 A shows the average number of substitutions among 1-484 
individual nonclonally related IgM rearrangements. Fig. 3 Z-6MAA 
B depicts the number of substitutions within IgM and IgG Z-6MAA' 
transcripts from the GC and memory B cell compartments. 2 - 6 M L  

Interestingly, IgG transcripts had accumulated almost twice Z-6MY 
as many substitutions as IgM transcripts. 2-6MB 

Fig. 4 shows the percentage of silent versus replacement 2-6MB' 
2 - 6 M  I I 

mutations among IgM (Fig. 4 A) and IgG (Fig. 4 B) tran- 2-6MCC 
scripts from the B cell subpopulations. Two thirds of the Z-6MA 
nucleotide changes encoded amino acid replacements, sug- 2-8MBB 
gesting that the nucleotide substitutions within a codon were 2-6MC 
random. Analysis of the number of substitutions in each of 2-6MH 

2-6MD 
the intervals encoded by the V, gene segment indicated that, 2 - 6 M F  

regardless of the isotype, the two hypervariable regions (CDR1 2-6MG 

and CDR2) accumulated the highest number of substitu- Z-BME 
tions when normalized for length (Fig. 5). Also as expected, Z-6MK 
the percentage of amino acid replacements within the CDRs 2-6MM 
was slightly higher than within the FWs (72.1 vs. 61%, respec- Z-SM3.1 
tively). Table 2 depicts the ratio of replacement vs. silent sub- 2-5M3. Z 
stitutions (R/S) among the B cell subpopulations. Interest- Z-SM3.3 
ingly, in the frameworks this ratio is maintained close to 1.5, 2-5M3.4 

2 -  5 M 3 . 6  
the expected value predicted by Shlomchik et al. (47) after 2 - 5 M 7 .  i 

taking into account the possibility of deleterious framework 2-5M7.3 
replacement mutations leading to negative B cell selection. 2-5M7.4 
The high R/S ratio observed within Bml transcripts should 2-5M7.5 
be cautiously analyzed, since most of the mutated V. se- 
quences derived from this B cell subpopulation display only 
one to two nucleotide differences compared with the germ- 
line. Because this low mutation frequency falls into the av- 
erage Taq polymerase error (see below), the Bin1 R/S ratio 
could at least partially be explained by an in vitro bias, Thus, 
analysis of the R/S ratio within the CDRs seem to reflect 
the process of progressive antigenic selection, as it increases 
along the proposed model of differentiation from Bm2 to 

TABLE I 

# MUTATIONS ( R / S )  JH 

FWI CDRI FW2 COR2 FW3 

- JH4 

0 / I  - JH4 

- J H 4 / 5  

- - JH3 

- JH6 

0 / i  - - JH4 

1 / 0  - JH4 

- - JH6 

I / 0  - - i / 0  JH4 # 

- - JH4 

- - I / I  JH4 @ 

- - I / 0  JH5 

- - JH6 

- - JH5 

- - JH3 

- - J H 6  

- - - J H 5  

1 / 0  1 / 0  - J H 2  

1 / 0  - JH3 

- I / 0  JH6 

- 0 / 1  i / 0  JH4 

- - I / 0  JH3 

- - JH5 

- - - JH5 

- - 0 / I  JH5 @ 

- - JH6 

- - i / 0  JH4 

- - 1 / 0  JH4 

- - JH5 

- - JH6  

- - JH3 

- - - JH4 

- JH4 

- - JH4 

- - 0 / 1  - JH6 

- - i / O  JH4 

I / 0  - 2 / 0  0 / i  JH6 

- - - JH4 

- - - JH3 

- - i / 0  J H I / 4  

0 / I  i / 0  - JH6 

- - - JH6 

- - JH5 

- - JH6 

- - - JH4 

- - J H 4  

- J H 6  

- i / 0  0 / I  J H 4  

i / 0  J H I  

Analysis of the nucleotide substitution ratio (R/S) among the five Bm 
subpopulations. Clone numbers denote the Bm subset followed by the 
V. family. Capital letters (M or G) correspond to the isotype, and are 
followed by the individual clone designation. 
# Nucleotide difference due to base pair deletion. 
@ Nucleotide difference(s) in FW3 can be explained by recombination. 
~5-bp nucleotide insertion in CDR2. 
*, *% *'* Clonally related sequences. 
+ Possible PCR hybrid sequence. 
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3-6MB 
3-6MC 
3-6MF 
3-6MI 
3-6MV 
3-6MBB 
3-6MAA 
3-6MII 
3-6MDD 
3-6MEE 
3-6MK 
3-6ML 
3-6MM 
3-6M2 
3-6M3 
3-6M4 
3-6M6 

3-5M4.1 
3-5M4.2 
3-5M4.3 
3-5M4.4 
3-5M4.5 
3-5M8.1 
3-5M8.5 
3-5M8.6 

4-6MC 
4-6MF 
4-6MI 
4-6M6 
4-6MY 

4-5MA 
4-5MB 
4-5MD 
4-5MG 
4-5MH 
4-5MP 

4-4M21 
4-4M22 
4-4M26 
4-4M27 
4-4M28 
4-4M29 

5-6MB 
5-6MD 
5-6MG 
5-6MH 
5-6MM 

5-5ME 
5-5MH 
5-SMK 
5-5MR 
5-5M0 
5-5MS 
5-5MU 

5-4M44 
5-4M45 
5-4M47 

Oli 
o/I  
IiO 
1/3 

i i i  

i12 

i / i  
i12 

i i 0  

I io 
I/O 
I/O 
i11 
i /o 

- I i O  

I/O o/I 
- i / 0  

- 0/i 

2/0 i /0 
0/2 

o/1 - 

1/o 

4/2 110 

o/1 - 

1/o - 

IiO 
3 / I  
5/4 
2/0 
2/1 

2/O 
3/O 
i / 3  

6/2 
3 / I  

I/O 
I / i  
i / 2  

4/O 

0 / i  

I / 0  
0 / I  
I / 0  

410 
2/0 

>2/I 
2 / i  
O/2 
I /2  
5/O 
6/0 
1 / I  
5 / i  
I / 2  
2/2 

2/O 
I/0 
3 / I  

i / i  

i / 3  

i /o 

2/0 4/0 i / 0  
0 / I  - 2 / i  
i / 0  i / 0  - I / 0  

- i / 0  - 

110  310 - Z l l  211 

- I / 0  - 5/1 
i / i  0 / i  I / 0  2 / i  
210 110 - i i i  I I 0  
2/I I /0 - 
I /1  110 i / 0  1/1 2/0 

- - I / 0  I / 0  

1/1 1/0 3/1 6/1 4/4 
I11 - i / i  

- - 2/0 
i / 3  0 / i  i / 0  i / I  2/3 
2 / i  0 / i  - i / i  3/0 

- 0 / I  - i / 0  0/2 

JH5 
JH4 
JH3 
JH4 # 
JH4 
JH4 
JH6 
JH4 
JH3 

# 

JH4 ^ 
JH5 
JH3 
JH4 
JH6 
JH4 
JH5 

JH3 
JH4 
JH4 
JH5 
JH4/5 
JH4 
JH4 
JH6 

JH3 
JH5 
JH4 
JH5 
JH4 

JH4 @ 
JH5 
JH5 
JH4 
JH6 @ 
JH4 @ 

JH4 
JH2 
JH4 @ 
JH6 
JH5 @ 
JH6 

- - I / 0  - JH4 
- I / I  - 2/0 - JH4 
- 1 / I  - i / 0  4/2 JHI 
- 2/0 i / 0  JH3 
- - 2/0 2/2 JH3 

0 / i  0 / i  I / I  JH4 @ 
i /2  - 1 / I  JH4 * 
- - - JH4 

i / 0  2/0 - JH4 
3/1 0/1 i /1  3/0 2/3 JH5 @ 
i / I  - i / 0  JH3 
- I / I  JH4 * 

- - 2/O - JH5 
- - 0 / I  I / 0  JH4 
- 2/0 i / 0  2 / I  JH4 
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3-6GI 
3-6G3 
3-6G5 
3-6G5' 
3-6GI0 
3-6GI0' 
3-6GII 
3-6G12 
3-6G12' 
3-6G12" 
3-6612'" 
3-6G13 
3-6G13' 
3-6G16 
3-6G20 

4-6GI 
4-6G3 
4-6G8 
4-6610 
4-6G12 

5-6G2 
5-6G3 
5-6G4 
5-6G5 
5-6G8 
5-6G11 

310 110 
311 2/1 

0/i 
2/I 
3/I 1/0 

2/0 
211 211 

1/0 

z/o 2/I 
II0 
312 210 
I/0 I/0 
z/o 2/0 

011 

011 

1/1 

411 111 
211 013 
314 211 
314 211 
110 110 
910 110 
2/I 6/0 
2/i I/0 
3/I 211 
4/0 411 
2/2 i / I  
2/I I/0 
2/I 3/2 

0/I 
2/4 2/I 

JH6 
JH6 ** 
JH4 
JH4 
JH4 
JH4 + 
JH3 
JH6 ** 
JHB ** 
JH6 ** 
JH6 ** 
JH4 *** 
JH4 *** 
JH4 
JH6 

I / I  i/0 - i / I  2/2 
i/2 I/0 - i/0 3/3 

2/I 0/i 3/0 i/0 
I / I  i/0 - I / I  2/i 
i/0 i/O 0/2 

JH3 
JH6 
JH6 
JH4 
JH4 *** 

i/2 3/0 0/I i/2 4/4 JH6 
0/2 I/0 5/2 5/3 JH4 
I / I  i/0 i/2 JH5 

0/I i/0 5/i JH6 
0/2 1/2 0/4 5/i JH4 

i/0 - I/0 i/0 JH6 

Bm5 cells. However, Bm5 IgG transcripts only reach a R/S 
ratio of 1.4 (Table 2). 

The Pattern of Nucleotide Substitutions Supports the Model of 
Mutational Preference~Strand Polarity. The analysis of 484 in- 
dependent substitutions is depicted in Table 3. In agreement 
with previous reports (6-10, 34), transitions predominate over 
transversions (226 vs. 218, respectively), even though there 
can be potentially twice as many possible transversion events. 
Our data also favor the notion of a bias against mutations 
at T nucleotides (15% of the substitutions), and a preferen- 
tial targeting at A:N over N:A changes (39% vs. 16.7%), 
supporting the view that hypermutation is preferentially tar- 
geted to one strand of the DNA molecule (6-9, 34). In the 
interpretation of these results it is important to consider how- 
ever that A:G substitutions (22% of our sample) have been 
reported to be the most frequent Taq polymerase misincor- 
poration events (48). 

The Small V, Families Contribute Considerable Diversity 
within the Human Tonsil B Cell Repertoire. To determine the 
extent of diversity contributed by B cells expressing members 
of the smallest V. families, we had to discriminate between 
those PCR artifacts mimicking in vivo restriction and/or donal 
expansion. We defined clonal expansion as the presence of 
scattered nucleotide differences throughout the regions en- 
coded by the V., D, and J, gene segments between two or 
more clones sharing the same V,-D-J. rearrangements. Tran- 
scripts sharing identical CDR3/FW4 regions but displaying 
extensive differences in the region encoded by the V. gene 
segment were considered PCR hybrid artifacts, and only dis- 
tinct mutations were included in the study. 

Our analysis of 146 transcripts from the five B cell sub- 
populations (Bml-Bm5) disclosed 131 nonidentical and 125 
nonrelated V.-D-J. rearrangements, 74 of which were en- 
coded by the single member of the V.6 gene family. Dupli- 
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Figure 2. Nucleotide sequence comparison of the CDR2 of V,6 con- 
taining transcripts from each of the subsets. (A) IgM transcripts, (B) IgG 
transcripts (see Table 1 for clone designations). Asterisk, base pair dele- 
tion. 

cated and triplicated transcripts were preferentially found in 
those subgroups requiring reamplification (Bml, Bin2, and 
Bm5), suggesting that they resulted from in vitro rather than 
in vivo expansion. Clonally related transcripts could only be 
identified within the IgG-expressing Bm3 and Bm4 subsets 
(Table I and Fig. 6), very likely as result of the selection pro- 
cess with progressive recruitment of single clones. In some 
instances however, the possibility of PCR hybrid artifacts was 
dif~cult to rule out (see below). The fact that we did not 
find donal expansion within the Bm5 memory cell pool might 
be due to the smaller Bm5 sample size. 

Overall, most of the analyzed sequences represented inde- 
pendent rearrangements, implying that B cells expressing V. 
gene segments from the smallest families fully participate in 
GC reactions. 

Characteristics of PCR Errors in the A nalysis of Polyclonal Popu- 
lations of B Cells Expressing a Single IT, Gene Segment. We 

expected the most common form of PCR error in our study 
to be nucleotide misincorporation. To calculate the internal 
Taq polymerase error rate, we used the IgM expressing Bml 
and Bm2 subsets as controls. Out of the 47 IgM transcripts 
independently sequenced from these two populations, 28 were 
completely germline encoded and the remaining 19 contained 
a total of 28 nucleotide differences. Assuming that these differ- 
ences were all due to Taq polymerase, the error rate would 
be 0.2% or 1/500 bp. Considering that the Bml and Bm2 
IgM transcripts were the result of two rounds of amplifica- 
tion (total -- 80 cycles), we calculate a misincorporation 
rate of <1/1000 bp. Deletions involving large areas within 
V.-D-J. transcript and hybrid sequences were most com- 
monly found among the IgM expressing Bm3 and Bm4 subsets 
(sequences not included in the analysis). Since artifacts of this 
kind arise when nicked DNA is used as a PCR template, 
it is not surprising to find them preferentially among the B 
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Figure 3. (.4) Average number of nucleotide substitutions within the 
IgM transcripts from each of the Bm subpopulations. (B) Average number 
of nucleotide substitutions within the IgG transcripts from the Bm3, Bm4, 
and Bin5 subpopulations. 

cell populations undergoing rapid expansion and apoptosis 
within the GC. 

Discussion 

One of  the hallmarks of  secondary immune responses is 
the recruitment of  long-lived memory B cells secreting high 

Figure 5. Average number of mutations within each of the regions en- 
coded by the V, gene segment. 

Figure 4. Percentage of replacement (hatched bars) and silent (light bars) 
substitutions within IgM (A) and IgG (B) transcripts from the different 
Bm subpopulations. 

Table 2. Replacement vs. Silent Substitutions in IgM 
and IgG Transc@ts from Tonsil B Cell Subsets 

FWs CDRs 
No. of No. of 

R/S P- , /S  substitutions sequences 

IgM 
Bml 9 0.6 15 22 
Bm2 1.7 2 14 25 

Bm3 1.6 2.3 156 25 

Bm4 1.8 3.2 113 17 

Bm5 1.6 4.5 55 15 

IgG 
Bm3 1.7 2.9 114 10 
Bm4 0.9 4 40 5 

Bm5 1 1.4 68 6 

R/S, Replacement/Silent substitutions. 
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Table 3. Transitions vs. Transuersions in IgM and IgG Transc@ts from Tonsil B Cell Subsets 

Total substitutions 

T C A G 

Proportion of the total number 
of substitutions for each base 

T C A G 

T - 0.09 0.03 0.02 
C 0.12 - 0.02 0.08 
A 0.08 0.08 - 0.22 
G 0.03 0.07 O. 10 - -  

T - 0.65 0.22 0.13 
C 0.52 - 0.12 0.36 
A 0.22 0.21 - 0.57 
G 0.16 0.36 0.48 - 

affinity antibodies specific for the triggering antigen. Memory 
B cells derive from precursor virgin B cells that undergo 
proliferation and differentiation in GC. With the aid of pheno- 
typic markers we have isolated five subpopulations corre- 
sponding to the progression of B cells from the virgin to 
the memory compartment. To aid in this classification, we 
have sequenced a total of 146 rearranged heavy chain variable 
region transcripts from the different subpopulations. Our 
results show that the B cell subpopulations derived from the 
GC (Bm3 and Bm4) have accumulated a large number of 
somatic mutations, whereas two of the mantle zone subpopu- 
lations (Bml and Bm2) display only IgM transcripts with 
virtually no evidence of having been subjected to somatic 
diversification. Interestingly, the remaining subset (Bm5) 
thought to represent the memory compartment displayed the 
same level of somatic mutation seen in the GC subsets, fur- 
ther supporting its GC origin. 

The existence of a natural IgM-,  IgD- memory com- 
partment has been described in mice (49). This compartment 
represents up to 2-6% of the total splenic B cell population 
of unimmunized animals and, although it is basically corn- 

posed of B cells that have undergone class switching to IgG, 
a fraction of the IgG transcripts have been shown to contain 
V. genes identical to the germline. It has been suggested 
that memory B cells expressing unmutated V. genes are 
selected based on their display of high affinity immunoglob- 
ulin receptors for antigen (49). A similar phenomenon has 
been described for memory B cells arising during intention- 
ally induced murine immune responses (50). In the present 
study we identified both IgM and IgG transcripts within the 
population of Bin5 cells characterized as the human memory 
compartment (Liu, Y.-J., and J. Banchereau, manuscript in 
preparation). However, while all the IgG transcripts contained 
at least three nucleotide substitutions within the region en- 
coded by the V. gene segment, 26% of the IgM transcripts 
(4/15) displayed only zero to two nucleotide differences from 
the corresponding germline counterpart. Whether these tran- 
scripts represent examples of germline encoded high affinity 
antibodies as opposed to contaminants carried over through 
the cell sorting and/or PCK manipulations cannot be ad- 
dressed at this point. 

Even though we have analyzed the V. sequences of a 
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Figure 6. Nucleotide sequences of the 
two sets of clonally related sequences ex- 
pressing V.6 gene segments from sub- 
groups Bm3 and Bm4 (see Table I for clone 
designations). 
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polydonal population of B ceils that very likely arose in re- 
sponse to a myriad of antigens, several interesting conclu- 
sions can be drawn from these studies. We found that within 
any given subpopulation, IgG transcripts had accumulated 
twice as many mutations as their IgM counterparts, suggesting 
either that the somatic mutation machinery is more active 
in IgG-expressing B ceils, or, as suggested by Kepler et al. 
(51), reentry of positively seelected cells into the GC takes 
place as a way of generating even higher affinity mutants. 
If this is the case, whether recirculation involves both IgM 
and IgG Bm5 cells, and the efficiency with which IgM- 
expressing cells undergo further class switches upon consecu- 
tive GC reactions are interesting questions that remain to 
be addressed. 

Analysis of the distribution of nucleotide substitutions dis- 
dosed that CDR1 was the most mutated among the different 
regions encoded by the V, gene segment. Since the vast 
majority of sequences in our study represent independent rear- 
rangements which very likely encode unrelated specificities, 
it is possible that an intrinsic mutational bias exists around 
CDR1. Betz et al. (52) have reported a similar observation 
in an elegant study compiling data from the mutations gener- 
ated in murine Ig genes during the response to phenyl-oxa- 
zolone as well as in unselected passenger transgenes. 

The analysis of the ratio of R/S substitutions within the 
five B cell subsets included in this study suggests that IgM- 
bearing B cells are progressively selected from the virgin (Bin1), 
to the memory compartments (Bm5). The same observation, 
however, does not apply to Bin5 IgG transcripts that display 
the lowest R/S ratio among the GC-derived subpopulations. 

It is important to recall that only a small proportion of GC 
B cells survive the selection process involved in the genera- 
tion of the memory pool, since many of the substitutions 
found among Bm3 and Bin4 cells may not confer an advan- 
tage for antigen binding. 

In situ studies of the kinetics of the murine GC reaction 
to the hapten 4-hydroxy-3-nitrophenyl acetyl have been re- 
cently reported. These studies disclosed the progressive reduc- 
tion in clonal diversity, increased restriction in the usage of 
canonical gene segments, and lack of somatic mutation within 
the noncanonical Ig genes expressed within the GC (34). We 
found reduction in donal diversity (i.e., clonal expansion) 
only in GC B cells (Bm3 and Bm4) containing IgG tran- 
scripts, even though our sample includes more than twice 
as many IgM transcripts. Although this observation can be 
explained based on the large sample size of the B cell pool 
contained within a human tonsil, it suggests that antigenic 
selection may operate preferentially on IgG expressing cells. 
The pattern of somatic mutation found within the IgM tran- 
scripts (high R/S ratios) rules out the possibility that they 
are the product of nonselected "passenger" B ceils. The fact 
that they are transcribed in frame also argues against the pos- 
sibility that they represent nonproductive rearrangements 
cotranscribed within IgG expressing B cells. 

The possibility of tracing B cells through their various 
stages of differentiation in peripheral lymphoid organs pro- 
vides the first substrate to address some of the fundamental 
questions that remain unresolved regarding the generation 
of T cell-dependent antibody responses in humans. 
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